アダマ-ルの積定理から相反定理へ

複素平面全体で正則な関数を整関数といいます。R>0に対して、整関数f(x)の最大値を

 M(R)=max [|z|≦R]|f(z)|

位数pを

 p=lim sup [R→∞] loglog M(R) / logR

とします。すなわちpは

 max [|z|≦R]|f(z)|≦exp(Rp+ε)

が成り立つpの内で最小のものです。

<アダマ-ルの積定理>

整関数f(x)の位数pが有限とする。Z=0をm0位の零点とする。他の零点をa1、a2、a3、・・・とし、その位数をm1、m2、m 3、・・・とする。このときp次以下の多項式g(z)が存在して、

 f(z)=zm0 eg(z) Πn=[1~∞] E(z/an,p)mn

と表せる。ここで

 E(z,0)=1-z、

 E(z,1)=(1-z) exp(z)

E(z,p)=(1-z) exp(z+z2/2+z3/3+・・・+zp/p) p>1

である。

例えば、整関数f(z)=sin(πz)の場合、位数p=1、すなわち

 max [|z|≦R]|sin(πz)|≦exp(R1+ε)

 eiπz=eiπ(-iR)=eπR より、

 |sin(πz)|=1/2・|eiπz+e-iπz|<1/2・|eπR+e-πR|<eπ・eR

です。sin(πz)=0 なるzは整数全体で、z→nで

 sin(πz)/ (z-n)=(-1)n・sin(π(z-n)) / (z-n) → (-1)n

なので、全て1位の零点を有します。n∊Zに対して

 an=n、m0=1、mn=1、g(z)=az+b

です。n≠0で

 sin(πz)=z1・exp(az+b)・Π’n=[-∞~∞] E(z/n,1)1   (n≠0)

 E(z,1)=(1-z) exp(z)

だから、

sin(πz)=z・exp(az+b)・Π’n=[-∞~∞] (1-z/n) exp(z/n)

   =z・exp(az+b)・Πn=[1~∞] (1+z/n) exp(-z/n) (1-z/n) exp(z/n)

   =z・exp(az+b)・Πn=[1~∞] (1-z2/n2)

対数微分をとれば

 π・cos(πz)/ sin(πz)=1/z+a+Σn=[1~∞] 2z/ (z2-n2)

となります。すべて奇関数なので、a=0となります。C=ebと置くと

 sin(πz)=Cz・Πn=[1~∞] (1-z2/n2)

 C=lim[z→0] π・sin(πz)/πz/Πn=[1~∞] (1-z2/n2)=π

よって

 sin(πz)=πz・Πn=[1~∞] (1-z2/n2)

が得られます。確かにz=0、±nのときに零点になっています。

上式を展開すると

 sin(πz)=πz-1/6・(πz)3+1/5!・(πz)5+・・・

    =πz・(1-Σn=[1~∞] z2/n2+Σn>m≧1 z4/n2 m2+・・・)

z3の係数を較べて、

 -π3/6=-πΣn=[1~∞] /n2=-πζ(2)

  ζ(2) =π2/6

が得られます。同様にz5の係数を較べて、

 π5/120=πΣn>m≧1 z4/n2 m2

 ζ(2) 2=[Σn=[1~∞] 1 /n2]・[Σm=[1~∞]1 /m2]

   =Σm=[1~∞] 1 /n4+2Σn>m≧1 z4/n2 m2

 (π2/6) 2=ζ(4)+2・π4/120

 ζ(4)=π4/36-π4/60=π4 (5/180-3/180)=π4/90

が得られます。

<ガンマ関数の積表示>

ガンマ関数1/Γ(z)は整関数で、0以下の整数が位数1の零点でした。アダマ-ルの積定理より、

 1/Γ(z)=zeaz+bΠn=[1~∞] (1+z/n) exp(-z/n)

よって

 1/zΓ(z)=1/Γ(z+1)=eaz+bΠn=[1~∞] (1+z/n) exp(-z/n)

ここでz=0とおくと

 1=1/Γ(0+1)=ea0+bΠn=[1~∞] (1+0/n) exp(-0/n)=eb

よって

 1/Γ(z)=zeazΠn=[1~∞] (1+z/n) exp(-z/n)

ここでz=1とおくと

 1/Γ(1)=1eaΠn=[1~∞] (1+1/n) exp(-1/n)

対数をとって

 0=a+Σn=[1~∞][ log(1+1/n)-1/n]

aの値は

 a=limN→∞Σn=[1~N][ 1/n-log(n+1)-logn)]

  =limN→∞ Σn=[1~N](1/n)-log(N+1)

  =limN→∞ Σn=[1~N](1/n)-logN+log(N/ (N+1))

  =limN→∞ Σn=[1~N](1/n)-logN

  =γ

となります。γはオイラ-の定数と呼ばれる値で、γ=0.57721・・・です。従って

 1/Γ(z)=zeγzΠn=[1~∞] (1+z/n) exp(-z/n)

 1/Γ(-z)=-ze-γzΠn=[1~∞] (1-z/n) exp(+z/n)

です。Γ(1-z)=-zΓ(-z)より

 1/Γ(z)Γ(1-z)

=-1/zΓ(z)Γ(-z)

=1/z・zeγzΠn=[1~∞] (1+z/n) exp(-z/n)・ze-γzΠn=[1~∞] (1-z/n) exp(+z/n)

=zΠn=[1~∞] (1+z/n) (1-z/n)

=zΠn=[1~∞] (1-z2/n2)

=sin(πz)/π

となり、相反定理が得られます。

 

ゼ-タ関数の関数等式とテータ関数の関係

<ゼ-タ関数の関数等式とテータ関数の関係>

ゼ-タ関数の関数等式は

 ξ(x)=πs/2Γ(s/2)ζ(s)

とおくと

 ξ(x)=ξ(1-x)

で表されます。テータ関数

 θ(t)=Σn=[-∞、∞] e-πtn^2

の変換公式は

 θ(t)=θ(1/t)/√t

でした。

 Ψ(t)=Σn=[1、∞] e-πtn^2

とおくと、

 θ(t)=1+2Ψ(t)

が成り立ちます。Γ関数の定義において、

 Γ(s)=∫[0、∞] xs-1e-xdx (s>0)

x=πtn2と変数変換すると、dx=πn2dtとなり

 Γ(s)=∫[0、∞] (πtn2)s-1e-πtn^2 πn2 dt

   =πsn2s[0、∞] ts-1e-πtn^2 dt

なので

 Γ(s/2)=πs/2ns[0、∞] ts/2-1e-πtn^2 dt

両辺をπs/2nsで割って

 πs/2・1/ns Γ(s/2)=∫[0、∞] ts/2-1e-πtn^2 dt

これを全ての自然数nについて加えれば

 πs/2・Γ(s/2) [Σn=[1、∞] 1/ns]=∫[0、∞] ts/2-1 n=[1、∞] e-πtn^2]dt

 πs/2・Γ(s/2)ζ(s) =∫[0、∞] ts/2-1 Ψ(t) dt

を得ます。 

 右辺=∫[0、1] ts/2-1 Ψ(t) dt+∫[1、∞] ts/2-1 Ψ(t) dt

として、第一項で、t=1/uと変数変換すると、dt=-1/u2 duより

 ∫[0、1] ts/2-1 Ψ(t) dt=-∫[∞、1] (1/u)s/2-1 Ψ(1/u) 1/u2 du

           =∫[1、∞] u-s/2-1 Ψ(1/u) du

ここで

  1+2Ψ(u)=θ(u)=θ(1/u)/u1/2=[1+2Ψ(1/u)]/u1/2

となることから、

 Ψ(1/u)=u1/2Ψ(u)+1/2・u1/2-1/2

を得ます。これを代入すると

 ∫[0、1] ts/2-1 Ψ(t) dt

 =∫[1、∞] u-s/2-1 [u1/2Ψ(u)+1/2・u1/2-1/2]du

 =∫[1、∞] u(1-s)/2-1 Ψ(u) du +1/2∫[1、∞] u(1-s)/2-1 du-1/2∫[1、∞] u-s/2-1du

 =∫[1、∞] u(1-s)/2-1 Ψ(u) du +1/(s-1)-1/s

 =∫[1、∞] u(1-s)/2-1 Ψ(u) du -1/s(1-s)

となります。なぜなら、s>0より

 1/2∫[1、∞] u(1-s)/2-1 du=1/2・2/(1-s) [u(1-s)/2]u=1、∞=1/(s-1) 

 -1/2∫[1、∞] u-s/2-1du=-1/2・(-2/s)[u-s/2]u=1、∞=-1/s

よって

 右辺=∫[0、1] ts/2-1 Ψ(t) dt+∫[1、∞] ts/2-1 Ψ(t) dt

   =∫[1、∞] u(1-s)/2-1 Ψ(u) du -1/s(1-s)+∫[1、∞] ts/2-1 Ψ(t) dt

   =∫[1、∞] [u(1-s)/2-1+us/2-1] Ψ(u) du -1/s(1-s)

となります。右辺は全ての実数sに対して積分が存在し、sを1-sに置き換えても、式が変わりません。

 左辺:ξ(s)=πs/2・Γ(s/2)ζ(s)

とすると、

 ξ(s)+1/s(1-s)=∫[1、∞] [t(1-s)/2-1+ts/2-1] Ψ(t) dt

は全ての実数sで定義され、関数等式

 ξ(s)=ξ(1-s)

が成り立ちます。