糖1分子で生産できるATP数はいくつでしょうか?

結局NADHを電子伝達系で用いる場合には、合計10H+がマトリクスから膜間腔へ輸送されます。FADH2の場合は合計6H+が膜間腔へ輸送されます。膜間腔のH+濃度と電位が高くなっているので、ミトコンドリア内膜を挟んだプロトン駆動力を利用してATP合成酵素がATPを合成します。

ATP合成酵素はF0サブユニットとF1サブユニットによる分子モ-タとして機能します。F0はミトコンドリア内膜に埋まっていて、F1はミトコンドリア・マトリクスに突き出た形で存在しています。F0モーターがH+の濃度勾配によるエネルギを使ってF1モーターを回すことによって、ATPを産生しています。3分子のH+がマトリクスへと輸送されるごとにATP1分子が合成されます。

しかし、実際にマトリクスにおいてATPを合成するためには、ATP合成の材料となるADPやリン酸Piをマトリクス内に取り込む必要があります。また、合成されたATPの大部分は細胞質で利用されるため、マトリクスから細胞質へと輸送される必要があります。

内膜を隔てたATP、ADP、Piの輸送
ミトコンドリア内膜を隔てたATP、ADP、 Piの輸送はアデニン・ヌクレオチド・トランスロカーゼとリン酸輸送体という2つの膜タンパク質によって行われています。アデニン・ヌクレオチド・トランスロカーゼは、ATP-ADP交換タンパク質のことで、細胞質のADP3-をミトコンドリア内へ、ミトコンドリア内のATP4-を細胞質へと対向輸送しています。この対向輸送では、プロトン勾配の電荷の差が用いられています。

リン酸輸送体は、細胞質のPiをミトコンドリア内へと輸送するときにH+も同時にミトコンドリア内へと共輸送します。この共輸送ではH+の濃度差が用いられています。ちなみに、対向輸送とは、膜の内外で異なる物質を相互に逆方向に移動させる輸送のことで、共輸送とは、膜の片側から異なる物質を同方向に移動させる輸送のことをいいます。

ミトコンドリアの外にATPを輸送し、マトリクスにADPを供給するためには、H+1個分のプロトン駆動力が用いられていました。ATP合成酵素は3H+で1個のATPを産出するので、細胞質内でATPを1分子増やすためには、4個分のH +が膜間腔からマトリクスに流入する必要があります。この数はNADHやFADH2が1分子あたりでどれくらいのATPを産生するかの指標となります。

細胞質内のATPを1分子増やすためには、4個分のH +が膜間腔からマトリクスに流入するということを踏まえると、NADH1分子あたり
・10[H+]/4[H+/ATP]=2.5ATP
FADH21分子あたり
・6[H+]/4[H+/ATP]=1.5ATP
が合成されることになります。

好気呼吸では、1分子のグルコースが「解糖系→ピルビン酸のアセチルCoAへの変換→クエン酸回路」という経路でATPやNADH、FADH2を生成していました。解糖の過程で2分子のATPと2分子のNADH、2ピルビン酸→2アセチルCoAの過程で2分子のNADH、クエン酸回路の過程で2分子のATP(GTP)と6分子のNADHと2分子のFADH2が生成されます。

・4ATP+10NADH・2.5[ATP/NADH]+2FADH2・1.5[ATP/FADH2]=4+25+3=32ATP
結局1分子のグルコ-スは、嫌気的代謝では2分子のATPしか生成できませんが、好気的代謝では32分子ものATPを細胞外に生成できることが分かります。

細胞は糖を取り込み、ミトコンドリアで大量のATPを合成できることが分かりました。青森出身の安保先生によると、若い時は解糖系の瞬発力を主に使い、老年期になるとミトコンドリア系の持久力を主に使って活動するので、年齢ともに少食にしていった方が適正体重を保ちやすいそうです。

 

TCA回路と電子伝達系

解糖系では1分子のグルコ-スは2分子のピルビン酸を生成するので2分子のNADHを生成します。さらに1分子のピルビン酸は、細胞内のミトコンドリアに送られ、ミトコンドリアのマトリックス内のTCA(tricarboxylic acid cycle)回路で3分子のNADHを発生させます。ミトコンドリアは外膜、膜間腔(まくかんこう)、内膜、マトリックスの2重膜構造を有しています。細胞によっては100~3000個ものミトコンドリアが含まれています。

運動してミトコンドリアが増えると同じ呼吸量でもATPの生産効率が高まるので、楽に走れるようになります。運動前は空腹にしておいて、最初に筋肉トレ-ニングをして汗をかいて有酸素運動状態に入ってから30分歩くだけでミトコンドリアは増加します。サウナの後に水風呂に入るとミトコンドリアは増加します。週末の2日間は摂取カロリを30%減らすのが有効です。日本医科大学の太田成男教授によると1日2時間の運動を1週間続けるだけでミトコンドリアは30%増加すると言われています。

TCA回路ではATP を直接作るのではなく、NADHやFADH2を作ります。さらにNADHやFADH2が呼吸鎖系でミトコンドリア内膜に水素イオンH+の濃度勾配を形成することにより、ATPを産生します。TCA回路は糖代謝だけでなく、アミノ酸代謝、尿素回路、糖新生など多くの代謝経路の仲立ちをしています。

TCA回路の全体反応は
・CH3-CO-S-CoA+3NAD ++FAD+2H2O+GDP+H3PO4
 → S-CoA+2CO2+3NADH+FADH2++2H++GTP
です。

NADHとFADH2はミトコンドリア内膜に埋め込まれた4つのたんぱく質複合体と反応してNAD +とFADに戻り、その際にミトコンドリアのマトリックスから膜間腔にH+を放出します。NADHは、解糖系で2分子、ピルビン酸脱水素酵素で2分子、TCA回路で6分子、合わせて10分子のATPを発生します。複合体ⅠでNADHはFMN(フラビン・モノヌクレオチド)と反応し、FMNに水素を渡します。FMNH2はFeSクラスタを介して、CoQ(ユビキノン)に水素を渡します。
・NADH+H+ +FMN→ NAD++FMNH2
・CoQ+FMNH2→CoQH2+FMN
複合体Ⅱでは、コハク酸がフマル酸(2重結合あり)に変化するときには自由エネルギ変化が小さいのでFADが使われます。
・HOOC-CH2-CH2-COOH+FAD →HOOC-CH=CH-COOH+FADH2
この反応で膜間腔に放出されるH+はありません。FAD (=Flavin Adenine Dinucleotide) はフラビン・アデニン・ジヌクレオチドの略語で、酸化還元反応における補酵素の一種です。FADの酸化還元電位は -219 mV で NAD 系より100mV程高く、開放エネルギが少なくNAD が使えないような反応で脱水素することができます。FADH2ではFADの左上の環が3つ並んだ部分の2つの酸素の二重結合がOH基になります。FADはADPにC5系炭素鎖と3環系のキノンが結合した構造をしています。

複合体Ⅲが行う電子伝達はQサイクルと呼ばれます。この反応では、まず、2分子のユビキノール(CoQH2)がユビキノン(CoQ)に変換される過程で4Hを膜間腔へと放出します。
・2CoQH2→ 2CoQ+4H++2e+2e
・CoQ+2H++2e→CoQ H2
・Cyt(Fe3+)+2e-→Cyt(Fe2+)
なる反応が生じ、シトクロムcが還元されます。シトクロムcは膜間腔側にありヘム鉄(=鉄+ポルフィリン環)が含まれています。
複合体Ⅳは、シトクロムcオキシダーゼと呼ばれ、シトクロムc(Fe2+)を酸化して酸素を還元します。複合体 Ⅳが行う電子伝達の第一段階では、シトクロムc の電子がCuAに渡されます。その後、電子はヘムa→ヘムa3→CuBを経て、最終的に酸素(1/2O2)へと渡され、水(H2O)に変換されます。酸素分子の酸化還元電位は約 +810 mVであり、FAD よりはるかに電子を受け取りやすくなっています。
・Cyt(Fe2+)+2H++1/2O2 → Cyt(Fe3+)+H2O
このシトクロムcから酸素に電子が2個渡される過程で、2分子のHがマトリクスから膜間腔へと輸送されます。複合体Ⅳにはヘム鉄(ヘムa)が多く含まれていますので、青酸カリがこのヘム鉄に配位すると、電子伝達系を阻害して、窒息してしまいます。

生物の活動メカニズムについて

私たちは炭水化物を食べてエネルギ、すなわちATP(=Adenosine TriPhosphate)を生成して活動しています。1939年にEngelhardtらによって、筋収縮のタンパク質であるミオシンがATPを加水分解することが発見され、1942年にセント=ジェルジによってATPが筋収縮に関わるエネルギ源であることが解明されました。ATPはリボ-スの両側にアデニンと3リン酸が結合した構造をしています。

生体内では、ATPにリン酸1分子が離れたり結合したりすることで、エネルギの放出・貯蔵、あるいは物質の代謝・合成が行われています。ATPは加水分解によりエネルギを発生させます。酵素反応がATPの加水分解反応と共役することで、物質の代謝・合成が行われるのです。すべての真核生物がATPを直接利用しているため、ATPは生体のエネルギ通貨とも呼ばれています。
・ATP+H2O → ADP(アデノシン二リン酸)+ H3PO4(リン酸)
・ΔG°’ = −30.5 kJ/mol (=−7.3 kcal/mol) 標準自由エネルギ変化
細胞内では、ATP濃度はADPの10倍程高く、リン酸濃度も標準状態の1%以下であるため、細胞内の環境ではATPの加水分解に伴って放出される自由エネルギは−10〜−11 kcal/mol にもなります。

糖からATPはどのように産出されるのでしょうか?

炭水化物は胃腸で消化されて糖となります。糖は腸で吸収され血液と共に各細胞に送られ、細胞質内の解糖系で分解されてピルビン酸(CH3-CO-COOH)になります。嫌気的条件下ではピルビン酸は乳酸になります。好気的条件下ではピルビン酸は、CO2(=ピルビン酸のカルボキシル基に相当)を排出し、アセチル基(CH3CO-)になり、脱水素酵素においてNAD+を還元して、補酵素(HS-CoA)と不可逆的に反応し、
・CH3-CO-COOH+NAD+ → CH3-CO-S-CoA+CO2+NADH+H+
アセチルCoA(CH3-CO-S-CoA)を生成します。反応にはビタミンB1が必要です。これは不可逆反応なので、動物は脂肪酸から糖を合成できません。脊椎動物の細胞では糖から乳酸になるのは 4% 程度で、殆どは好気的にアセチルCoAを生成します。脂肪やたんぱく質も分解されてアセチル CoAとなってTCA 回路に入り、最終的に二酸化炭素 にまで酸化されます。過剰のアセチルCoAは中性脂肪を生成するため、アセチルCoAの代謝を抑制することで動脈硬化、高脂血症を防ぐことができます。アセチルCoAはADPに2つのペプチド結合を有する側鎖がついた構造をしています。

NAD (=Nicotinamide Adenine Dinucleotide) は ニコチンアミド・アデニン・ジヌクレオチド) と呼ばれる電子運搬体です。NADは2つのHを同時に引き抜き、自分がNADHになりつつ水素イオンH+を放出します。NADの酸化還元電位は‐320 mV と低く、異化代謝系で比較的大きなエネルギが解放される場合に、酵素反応に共役して脱水素反応を担います。NADはアデノシン・モノリン酸にニコチンアミド・リボ-ス・リン酸が酸素を介して結合した構造をしています。